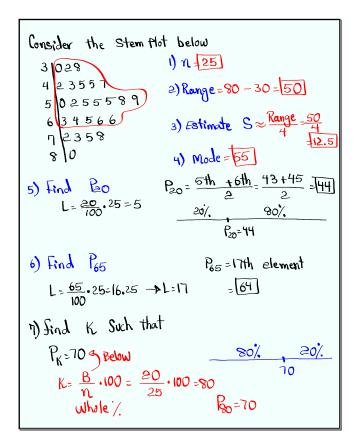
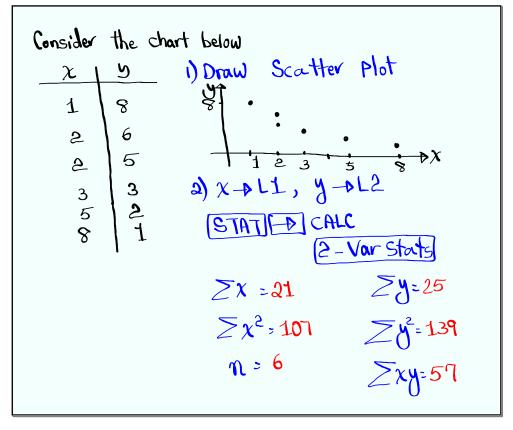

Feb 19-8:47 AM


Mar 10-1:42 PM


Mar 10-1:58 PM

Mar 10-2:09 PM

Mar 10-2:19 PM

Mar 10-2:30 PM

Use STATI D CALC

8: Lin Reg(a+bx) with L1
$$\stackrel{.}{\in}$$
 L2

0=7.353

 $\Rightarrow y \approx 7.4 - .9x$

80% of Y-values

 $b = -.910$

are explained by $r^2 .797 \Rightarrow r^2 \approx 80\%$
 $x - values$
 $r = -.893 - 1 \leq r \leq 1$

If r is close to $\pm 1 - \lambda$ Correlation is Significant

If r is close to $0 - \lambda$ Linear Correlation is not significant.

Mar 10-2:37 PM

study time	Exam Score	
8	92	study time -AX -ALI
9	90	Exam Store - by ->L2
10	9 5	use Lin Reg (a+bx)
<u>6</u> 7	80	Q=50.619≈51
5	70	$b=4.629 \approx 5$
Regression line $\gamma \approx 51 + 5 \chi$ $\gamma \approx 51 + 5 \chi$		
89%, of exam Scores r941		
are explained by Study time.		
r is very close to 1 —> Linear Correlation Seems to be Significant		

Mar 10-2:50 PM

Intro. to Probabilities:

E -> Desired outcome or event P(E) -> Prob. that E happens $P(E) = \frac{Total + of all desired outcomes}{Total + of all Possible outcomes}$ A box has 3 Red, 2 white, and 5 blue

balls. one ball is randomly selected. $P(Red Color) = \frac{3 \text{ red Colors}}{10 \text{ Total balls}} = \frac{3}{10} = \frac{3}{10}$ $P(\text{white Color}) = \frac{2 \text{ white}}{10 \text{ Total balls}} = \frac{2}{10} = \frac{1}{10} = \frac{2}{10}$

Mar 10-2:55 PM

Standard deck of playing Cards

52 Cards Draw One Card

26 Red
$$P(Red) = \frac{26}{52} = \frac{1}{2}$$

12 Face

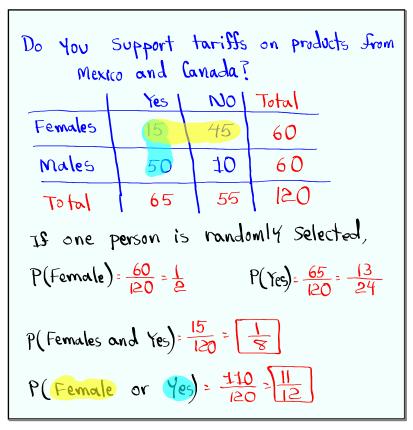
4 Aces

 $P(Face) = \frac{12}{52} = \frac{3}{13}$
 $P(Ace) = \frac{4}{52} = \frac{1}{13}$
 $P(Face) = \frac{12+4}{52} = \frac{16}{52} = \frac{4}{13}$
 $P(Face) = \frac{4}{52} = \frac{4}{13}$
 $P(Face) = \frac{4}{52} = \frac{4}{13}$

Mar 10-3:01 PM

What is the Prob. that a randomly Selected Person has a birthday

1) Today $\frac{1}{365}$ 2) this week $\frac{1}{52}$ 3) this Month $\frac{1}{12}$


- a) P(E)=1 Sure event
- 3) P(E)=0 Impossible event
- 4) 0 < P(E) < .05 > Rare event

Mar 10-3:11 PM

E
$$\rightarrow$$
 Desired Event
E \rightarrow E-bar, Not E, E Complement
 $P(E) + P(E) = 1$ Complement Rule
 $P(E) = 1 - P(E)$
 $P(Rowin) = .2$ $P(Rowin) = 1 - P(Rowin)$
 $= 1 - .2 = .8$

Mar 10-3:16 PM

Mar 10-3:19 PM

Mar 10-3:23 PM

Selection is less than 5):
$$\frac{4}{30} = \frac{2}{15}$$

P(Selection is at least 25): $\frac{6}{30} = \frac{1}{5}$

P(Selection is multiple of 4): $\frac{7}{30}$

4,8,12,16,20,24,28

P(Selection is even and odd number)

= $\frac{0}{30} = 0$

Mar 10-3:31 PM